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Hoffman MM, Buske OJ, Noble WS. (2010). The Genomedata format for storing large-scale functional
genomics data. Bioinformatics, 26(11):1458-1459; doi:10.1093/bioinformatics/btq164

Please cite this paper if you use Genomedata.

1.1 Installation

Python (2.6 or 2.7) and the HDF5 libraries are required before you can install Genomedata.

1.1.1 Installing HDF5

Ubuntu/Debian:

sudo apt-get install libhdf5-serial-dev hdf5-tools

CentOS/RHEL/Fedora:

sudo yum -y install hdf5 hdf5-devel

OpenSUSE:

sudo zypper in hdf5 hdf5-devel libhdf5

If HDF5 has been installed from source, set the HDF5_DIR environment variable to the directory where it was in-
stalled.
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1.1.2 Installing Numpy

With Python 2.6 or 2.7 installed:

pip install numpy

1.1.3 Installing Genomedata

With Python 2.6 or 2.7 installed:

pip install genomedata

Note: The latest version of genomedata may not will not install with older versions of pip (< 6.0) due to some of the
dependencies requiring a newer version. You can update your pip using the command:

pip install --upgrade pip

Note: Genomedata is only supported on 64 bit systems.

Note: The following are prerequisites:

• Linux/Unix This software has been tested on Linux and Mac OS X systems. We would love to add support for
other systems in the future and will gladly accept any contributions toward this end.

• Zlib

Note: For questions, comments, or troubleshooting, please refer to the support section.

1.2 Overview

Genomedata provides a way to store and access large-scale functional genomics data in a format which is both space-
efficient and allows efficient random-access. Genomedata archives are currently write-once, although we are working
to fix this.

Under the surface, Genomedata is implemented as one or more HDF5 files, but Genomedata provides a transparent
interface to interact with your underlying data without having to worry about the mess of repeatedly parsing large data
files or having to keep them in memory for random access.

The Genomedata hierarchy:

Each Genome contains many Chromosomes

Each Chromosome contains many Supercontigs

Each Supercontig contains one continuous data set Each continuous data set is a
numpy.array of floating point numbers with a column for each data track and a row for each
base in the data set.

4 Chapter 1. Genomedata 1.5.0 documentation
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Why have Supercontigs? Genomic data seldom covers the entire genome but instead tends to be defined in large
but scattered regions. In order to avoid storing the undefined data between the regions, chromosomes are divided
into separate supercontigs when regions of defined data are far enough apart. They also serve as a convenient
chunk since they can usually fit entirely in memory.

1.3 Implementation

Genomedata archives are implemented as one or more HDF5 files. The API handles both single-file and directory
archives transparently, but the implementation options exist for several performance reasons.

Use a directory with few chromosomes/scaffolds:

• Parallel load/access

• Smaller file sizes

Use a single file with many chromosomes/scaffolds:

• More efficient access with many chromosomes/scaffolds

• Easier archive distribution

Implementing the archive as a directory makes it easier to parallelize access to the data. In particular, it makes it easy
to create the archives in parallel with one chromosome on each machine. It also reduces the likelihood of running
into the 2 GB file limit applicable to older applications and older versions of 32-bit UNIX. We are currently using an
81-track Genomedata archive for our research which has a total size of 18 GB, but the largest single file (chr1) is only
1.6 GB.

A directory-based Genomedata archive is not ideal for all circumstances, however, such as when working with
genomes with many chromosomes, contigs, or scaffolds. In these situations, a single file implementation would
be much more efficient. Additionally, having the archive as a single file allows the archive to be distributed much more
easily (without tar/zip/etc).

Note: The default behavior is to implement the Genomedata archive as a directory if there are fewer than 100
sequences being loaded and as a single file otherwise.

New in version 1.1: Single-file-based Genomedata archives

1.4 Creation

A Genomedata archive contains sequence and may also contain numerical data associated with that sequence. You
can easily load sequence and numerical data into a Genomedata archive with the genomedata-load command (see
command details additional details):

genomedata-load [-t trackname=signalfile]... [-s sequencefile]... GENOMEDATAFILE

This command is a user-friendly shortcut to the typical workflow. The underlying commands are still installed and
may be used if more fine-grained control is required (for instance, parallel data loading or adding additional tracks
later). The commands and required ordering are:

1. genomedata-load-seq

2. genomedata-open-data

3. genomedata-load-data

1.3. Implementation 5
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4. genomedata-close-data

Entire data tracks can later be replaced with the following pipeline:

1. genomedata-erase-data

2. genomedata-load-data

3. genomedata-close-data

New in version 1.1: The ability to replace data tracks.

Additional data tracks can be added to an existing archive with the following pipeline:

1. genomedata-open-data

2. genomedata-load-data

3. genomedata-close-data

New in version 1.2: The ability to add data tracks.

As of the current version, Genomedata archives must include the underlying genomic sequence and can only be created
with genomedata-load-seq. A Genomedata archive can be created without any tracks, however, using the following
pipeline:

1. genomedata-load-seq

2. genomedata-close-data

New in version 1.2: The ability to create an archive without any data tracks.

Additionally, you may remove portions of data from tracks by hardmasking the specified data tracks. This can be done
anytime after loading in data and unless specified otherwise will automatically close the archive as well. A track can
be loaded and filtered with the following pipeline:

1. genomedata-open-data

2. genomedata-load-data

3. genomedata-hardmask

New in version 1.4: The ability to hardmask tracks.

Note: A call to h5repack after genomedata-close-data may be used to transparently compress the data.

1.4.1 Example

The following is a brief example for creating a Genomedata archive from sequence and signal files.

Given the following two sequence files:

1. A text file, chr1.fa:

>chr1
taaccctaaccctaaccctaaccctaaccctaaccctaaccctaacccta
accctaaccctaaccctaaccctaaccct

2. A compressed text file, chrY.fa.gz:

>chrY
ctaaccctaaccctaaccctaaccctaaccctaaccctCTGaaagtggac

6 Chapter 1. Genomedata 1.5.0 documentation
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and the following two signal files:

1. signal_low.wigFix:

fixedStep chrom=chr1 start=5 step=1
0.372
-2.540
0.371
-2.611
0.372
-2.320

2. signal_high.bed.gz:

chrY 0 12 4.67
chrY 20 23 9.24
chr1 1 3 2.71
chr1 3 6 1.61
chr1 6 24 3.14

A Genomedata archive (genomedata.test) could then be created with the following command:

genomedata-load -s chr1.fa -s chrY.fa.gz -t low=signal_low.wigFix \
-t high=signal_high.bed.gz genomedata.test

or the following pipeline:

genomedata-load-seq genomedata.test chr1.fa chrY.fa.gz
genomedata-open-data genomedata.test low high
genomedata-load-data genomedata.test low < signal_low.wigFix
zcat signal_high.bed.gz | genomedata-load-data genomedata.test high
genomedata-close-data genomedata.test

Note: chr1.fa and chrY.fa.gz could also be combined into a single sequence file with two sequences.

Note: If using a glob syntax for your sequence files, remember to put the glob filename in quotes to avoid having
your shell expand the glob before it genomedata-load uses it (e.g. -s “chr*.agp.gz”)

Warning: It is important that the sequence names (chrY, chr1) in the signal files match the sequence identifiers
in the sequence files exactly.

1.5 Genomedata usage

1.5.1 Python interface

The data in Genomedata is accessed through the hierarchy described in Overview. A full Python API is also available.

Note: The Python API expects that a genomedata archive has already been created. This can be done manually via
the genomedata-load command. Alternatively, this can be done programmatically using :_load_seq:load_seq.

1.5. Genomedata usage 7
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To appreciate the full benefit of Genomedata, it is most easily used as a contextmanager:

from genomedata import Genome
[...]
gdfilename = "/path/to/genomedata/archive"
with Genome(gdfilename) as genome:

[...]

Note: If Genome is used as a context manager, it will clean up any opened Chromosomes automatically. If not, the
Genome object (and all opened chromosomes) should be closed manually with a call to Genome.close().

1.5.2 Basic usage

Genomedata is designed to make it easy to get to the data you want.

Here are a few examples:

Get arbitrary sequence (10-bp sequence starting at chr2:1423):

>>> chromosome = genome["chr2"]
>>> seq = chromosome.seq[1423:1433]
>>> seq
array([116, 99, 99, 99, 99, 103, 103, 103, 103, 103], dtype=uint8)
>>> seq.tostring()
'tccccggggg'

Get arbitrary data (data from first 3 tracks for region chr8:999-1000):

>>> chromosome = genome["chr8"]
>>> chromosome[999:1001, 0:3] # Note the half-open, zero-based indexing
array([[ NaN, NaN, NaN],

[ 3. , 5.5, 3.5], dtype=float32)

Get data for a specific track (specified data in first 5-bp of chr1):

>>> chromosome = genome["chr1"]
>>> data = chromosome[0:5, "sample_track"]
>>> data
array([ 47., NaN, NaN, NaN, NaN], dtype=float32)

Only specified data:

>>> from numpy import isfinite
>>> data[isfinite(data)]
array([ 47.], dtype=float32)

Note: Specify a slice for the track to keep the data in column form:

>>> col_index = chromosome.index_continuous("sample_track")
>>> data = chromosome[0:5, col_index:col_index+1]

8 Chapter 1. Genomedata 1.5.0 documentation
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Command-line interface

Genomedata archives can be created and loaded from the command line with the genomedata-load command.

1.5.3 genomedata-load

This is a convenience script that will do everything necessary to create a Genomedata archive. This script takes as
input:

• assembly files in either FASTA (.fa or .fa.gz) format (where the sequence identifiers are the names of the
chromosomes/scaffolds to create), or assembly files in AGP format (when used with --assembly). This is
mandatory, despite having an option interface.

• trackname, datafile pairs (specified as trackname=datafile), where:

– trackname is a string identifier (e.g. broad.h3k27me3)

– datafile contains signal data for this data track in one of the following formats: WIG, BED3+1, bed-
Graph, or a gzip’d form of any of the preceding

– the chromosomes/scaffolds referred to in the datafile MUST be identical to those found in the se-
quence files

• the name of the Genomedata archive to create

See the full example for more details.

Chromosome naming

When loading sequence data that does not have a UCSC-style name (e.g. ‘chr1’), you may provide a tab-delimited
file that provides a mapping between naming styles to be given to the ‘–assembly-report’ option. This file expects a
commented header to provide labels to the columns below it. For example the following is a valid file for ‘–assembly-
report’:

# Sequence-Name GenBank-Accn RefSeq-Accn UCSC-style-name
1 CM000663.2 NC_000001.11 chr1

This file format style is based on the assembly reports provided by NCBI.

Command-line usage information:

usage: genomedata-load [-h] [-r ASSEMBLY-REPORT] [-n NAME_STYLE] [--version] [--
→˓verbose] -s SEQUENCE -t NAME=FILE [-m MASKFILE] [--assembly | --sizes] [-f | -d]
→˓GENOMEDATAFILE

Create Genomedata archive named GENOMEDATAFILE by loading
specified track data and sequences. If GENOMEDATAFILE
already exists, it will be overwritten.
--track and --sequence may be repeated to specify
multiple trackname=trackfile pairings and sequence files,
respectively.

Example: genomedata-load -t high=signal.high.wig -t low=signal.low.bed.gz -s chrX.fa -
→˓s chrY.fa.gz GENOMEDATAFILE

positional arguments:
GENOMEDATAFILE genomedata archive

(continues on next page)
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(continued from previous page)

optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit

Chromosome naming:
-r ASSEMBLY-REPORT, --assembly-report ASSEMBLY-REPORT

Tab-delimited file with columnar mappings between chromosome
→˓naming styles.
-n NAME_STYLE, --name-style NAME_STYLE

Chromsome naming style to use based on ASSEMBLY-REPORT.
→˓Default: UCSC-style-name

Flags:
--verbose Print status updates and diagnostic messages

Input data:
-s SEQUENCE, --sequence SEQUENCE

Add the sequence data in the specified file or files (may use
→˓UNIX glob wildcard syntax)
-t NAME=FILE, --track NAME=FILE

Add data from FILE as the track NAME, such as: -t
→˓signal=signal.wig
-m MASKFILE, --maskfile MASKFILE

A BED file containing regions to mask out from tracks before
→˓loading
--assembly sequence files contain assembly (AGP) files instead of

→˓sequence
--sizes sequence files contain list of sizes instead of sequence

Implementation:
-f, --file-mode If specified, the Genomedata archive will be implemented as a

→˓single file, with a separate h5 group for each Chromosome. This is recommended if
→˓there are a large

number of Chromosomes. The default behavior is to use a
→˓single file if there are at least 100 Chromosomes being added.
-d, --directory-mode If specified, the Genomedata archive will be implemented as a

→˓directory, with a separate file for each Chromosome. This is recommended if there
→˓are a small number of

Chromosomes. The default behavior is to use a directory if
→˓there are fewer than 100 Chromosomes being added.

Alternately, as described in Overview, the underlying Python and C load scripts are also accessible for more finely-
grained control. This can be especially useful for parallelizing Genomedata loading over a cluster.

You can use wildcards when specifying sequence files, such as in genomedata-load-seq -s 'chr*.fa'.
You must be sure to quote the wildcards so that they are not expanded by your shell. For most shells, this means using
single quotes ('chr*.fa') instead of double quotes ("chr*.fa").

If you aren’t going to use the sequence later on, loading the assembly from an AGP file will be faster and take less
memory during loading, and disk space afterward.

10 Chapter 1. Genomedata 1.5.0 documentation
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1.5.4 genomedata-load-seq

This command adds the provided sequence files to the specified Genomedata, archive creating it if it does not already
exist. Sequence files should be in FASTA (.fa or .fa.gz) format. Gaps of >= 100,000 base pairs in the reference
sequence, are used to divide the sequence into supercontigs. The FASTA definition line will be used as the name for
the chromosomes/scaffolds created within the Genomedata archive and must be consistent between these sequence
files and the data loaded later with genomedata-load-data. See this example for details.

usage: genomedata-load-seq [-h] [-r ASSEMBLY-REPORT] [-n NAME_STYLE] [--version] [-a]
→˓[-s] [-f] [-d] [--verbose] gdarchive seqfiles [seqfiles ...]

Start a Genomedata archive at GENOMEDATAFILE with the provided sequences. SEQFILEs
→˓should be in fasta format, and a separate Chromosome will be created for each
→˓definition line.

positional arguments:
gdarchive genomedata archive
seqfiles sequences in FASTA format

optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit
-a, --assembly SEQFILE contains assembly (AGP) files instead of sequence
-s, --sizes SEQFILE contains list of sizes instead of sequence
-f, --file-mode If specified, the Genomedata archive will be implemented as a

→˓single file, with a separate h5 group for each Chromosome. This is recommended if
→˓there are a large

number of Chromosomes. The default behavior is to use a
→˓single file if there are at least 100 Chromosomes being added.
-d, --directory-mode If specified, the Genomedata archive will be implemented as a

→˓directory, with a separate file for each Chromosome. This is recommended if there
→˓are a small number of

Chromosomes. The default behavior is to use a directory if
→˓there are fewer than 100 Chromosomes being added.
--verbose Print status updates and diagnostic messages

Chromosome naming:
-r ASSEMBLY-REPORT, --assembly-report ASSEMBLY-REPORT

Tab-delimited file with columnar mappings between chromosome
→˓naming styles.
-n NAME_STYLE, --name-style NAME_STYLE

Chromsome naming style to use based on ASSEMBLY-REPORT.
→˓Default: UCSC-style-name

1.5.5 genomedata-open-data

This command opens the specified tracks in the Genomedata archive, allowing data for those tracks to be loaded with
genomedata-load-data.

usage: genomedata-open-data [-h] [-v] --trackname TRACKNAME [TRACKNAME ...]
[--verbose]
gdarchive

Open one or more tracks in the specified Genomedata archive.

positional arguments:
(continues on next page)
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(continued from previous page)

gdarchive genomedata archive

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit
--trackname TRACKNAME [TRACKNAME ...]

tracknames to open
--verbose Print status updates and diagnostic messages

1.5.6 genomedata-hardmask

This command permanently and irreversibly masks out regions from tracks in the Genomedata archive. Due to slow
performance, it is not recommended for masking large genome-wide datasets. In the case of very large datasets, it is
recommended you mask or filter your data first, then load the masked data with genomedata-load-data.

usage: genomedata-hardmask [-h] [-v] [-t TRACKNAME [TRACKNAME ...]]
[--hardmask OPERATOR] [--no-close] [--dry-run]
[--verbose]
maskfile gdarchive

Permanently mask TRACKNAME(s) from a genomedata archive with MASKFILE using an
optional filter operator.

positional arguments:
maskfile input mask file
gdarchive genomedata archive

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit
-t TRACKNAME [TRACKNAME ...], --trackname TRACKNAME [TRACKNAME ...]

Track(s) to be filtered (default: all)
--hardmask OPERATOR Specify a comparison operation on a value to mask out

(e.g. "lt0.5" will mask all values less than 0.5). See
the bash comparison operators for the two letter
operations (default: all values masked)

--no-close Do not close the genomedata archive after masking
--dry-run Do not perform any masking. Useful with verbosity set

to see what regions would be filtered
--verbose Print status and diagnostic messages

1.5.7 genomedata-load-data

This command loads data from stdin into Genomedata under the given trackname. The input data must be in one
of these supported datatypes: WIG, BED3+1, bedGraph. The chromosome/scaffold references in these files must
match the sequence identifiers in the sequence files loaded with genomedata-load-seq. See this example for details. A
chunk-size can be specified to control the size of hdf5 chunks (the smallest data read size, like a page size). Larger
values of chunk-size can increase the level of compression, but they also increase the minimum amount of data
that must be read to access a single value.

BED3+1 format is interpreted the same ways as bedGraph, except that the track definition line is not required.

12 Chapter 1. Genomedata 1.5.0 documentation
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Usage: genomedata-load-data [OPTION...] GENOMEDATAFILE TRACKNAME
Loads data into Genomedata format
Takes track data in on stdin

-c, --chunk-size=NROWS Chunk hdf5 data into blocks of NROWS. A higher
value increases compression but slows random
access. Must always be smaller than the max size
for a dataset. [default: 10000]

-?, --help Give this help list
--usage Give a short usage message

-V, --version Print program version

Mandatory or optional arguments to long options are also mandatory or optional
for any corresponding short options.

1.5.8 genomedata-close-data

Closes the specified Genomedata arhive.

usage: genomedata-close-data [-h] [-v] [--verbose] gdarchive

Compute summary statistics for data in Genomedata archive and ready for
accessing.

positional arguments:
gdarchive genomedata archive

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit
--verbose Print status updates and diagnostic messages

1.5.9 genomedata-erase-data

Erases all data associated with the specified tracks, allowing the data to then be replaced. The pipeline for replacing a
data track is:

1. genomedata-erase-data

2. genomedata-load-data

3. genomedata-close-data

usage: genomedata-erase-data [-h] [-v] --trackname TRACKNAME [TRACKNAME ...]
[--verbose]
gdarchive

Erase the specified tracks from the Genomedata archive in such a way that the
track data can be replaced (via genomedata-load-data).

positional arguments:
gdarchive genomedata archive

optional arguments:
-h, --help show this help message and exit

(continues on next page)
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(continued from previous page)

-v, --version show program's version number and exit
--trackname TRACKNAME [TRACKNAME ...]

tracknames to erase
--verbose Print status updates and diagnostic messages

1.5.10 genomedata-info

This command displays information about a genomedata archive. Running the following command:

genomedata-info tracknames_continuous genomedata

displays the list of continous tracks. Running:

genomedata-info contigs genomedata

displays the list of contigs in BED format (0-based, half-open indexing).

This command generates a tab-delimited file containing chromosome name and sizes, suitable for use as a UCSC
“chrom sizes” file:

genomedata-info sizes genomedata

usage: genomedata-info [-h] [-v]
{tracknames,tracknames_continuous,contigs,sizes}
gdarchive

Print information about a genomedata archive.

positional arguments:
{tracknames,tracknames_continuous,contigs,sizes}

available commands
gdarchive genomedata archive

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit

1.5.11 genomedata-query

Prints data from a genomedata archive, for the track TRACKNAME, on CHROM, in the region BEGIN-END (0-based,
half-open indexing). Intended as a convenience function only; this is much slower than the Python interface, so it
should not be used for large regions.

usage: genomedata-query [-h] [-v] gdarchive trackname chrom begin end

print data from genomedata archive in specified trackname and coordinates

positional arguments:
gdarchive genomedata archive
trackname track name
chrom chromosome name
begin chromosome start
end chromosome end

(continues on next page)
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(continued from previous page)

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit

Python API

The Genomedata package is designed to be used from a variety of scripting languages, but currently only exports the
following Python API.

class genomedata.Genome(filename, *args, **kwargs)
The root level of the genomedata object hierarchy.

If you use this as a context manager, it will keep track of any open Chromosomes and close them (and the
Genome object) for you later when the context is left:

with Genome("/path/to/genomedata") as genome:
chromosome = genome["chr1"]
[...]

If not used as a context manager, you are responsible for closing the Genomedata archive once you are done:

>>> genome = Genome("/path/to/genomedata")
>>> chromosome = genome["chr1"]
[...]
>>> genome.close()

__init__(filename, *args, **kwargs)
Create a Genome object from a genomdata archive.

Parameters

• filename (string) – the root of the Genomedata object hierarchy. This can either
be a .genomedata file that contains the entire genome or a directory containing multiple
chromosome files.

• *args – args passed on to open_file if single file or to Chromosome if directory

• **kwargs – keyword args passed on to open_file if single file or to Chromosome if
directory

Example:

>>> genome = Genome("./genomedata.ctcf.pol2b/")
>>> genome
Genome("./genomedata.ctcf.pol2b/")

[...]
>>> genome.close()
>>> genome = Genome("./cat_chipseq.genomedata", mode="r")

[...]
>>> genome.close()

__iter__()
Return next chromosome, in sorted order, with memoization.

Example:

1.5. Genomedata usage 15
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for chromosome in genome:
print chromosome.name
for supercontig, continuous in chromosome.itercontinuous():
[...]

__getitem__(name)
Return a reference to a chromosome of the given name.

Parameters name (string) – name of the chromosome (e.g. “chr1” if chr1.genomedata is
a file in the Genomedata archive or chr1 is a top-level group in the single-file Genomedata
archive)

Returns Chromosome

Example:

>>> genome["chrX"]
<Chromosome 'chrX', file='/path/to/genomedata/chrX.genomedata'>
>>> genome["chrZ"]
KeyError: 'Could not find chromosome: chrZ'

add_track_continuous(trackname)
Add a new track

The Genome object must have been created with :param mode:=”r+”. Behavior is undefined if this is not
the case.

Currently sets the dirty bit, which can only be erased with genomedata-close-data

close()
Close this Genomedata archive and any open chromosomes

If the Genomedata archive is a directory, this closes all open chromosomes. If it is a single file, this closes
that file. This should only be used if Genome is not a context manager (see Genome). The behavior is
undefined if this is called while Genome is being used as a context manager.

erase_data(trackname)
Erase all data for the given track across all chromosomes

The Genome object must have been created with :param mode:=”r+”. Behavior is undefined if this is not
the case.

Currently sets the dirty bit, which can only be erased with genomedata-close-data

property format_version
Genomedata format version

None means there are no chromosomes in it already.

index_continuous(trackname)
Return the column index of the trackname in the continuous data.

Parameters trackname (string) – name of data track

Returns integer

This is used for efficient indexing into continuous data:

>>> col_index = genome.index_continuous("sample_track")
>>> data = genome["chr3"][100:150, col_index]

although for typical use, the track can be indexed directly:
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>>> data = genome["chr3"][100:150, "sample_track"]

property isopen
Return a boolean indicating if the Genome is still open

property maxs
Return a vector of the maximum value for each track.

Returns numpy.array

property means
Return a vector of the mean value of each track.

Returns numpy.array

property mins
Return the minimum value for each track.

Returns numpy.array

property num_datapoints
Return the number of datapoints in each track.

Returns a numpy.array vector with an entry for each track.

property num_tracks_continuous
Returns the number of continuous data tracks.

property sums
Return a vector of the sum of the values for each track.

Returns numpy.array

property sums_squares
Return a vector of the sum of squared values for each track’s data.

Returns numpy.array

property tracknames_continuous
Return a list of the names of all data tracks stored.

property vars
Return a vector of the variance in the data for each track.

Returns numpy.array

class genomedata.Chromosome(h5file, where='/', name=None)
The Genomedata object corresponding to data for a given chromosome.

Usually created by keying into a Genome object with the name of a chromosome, as in:

>>> with Genome("/path/to/genomedata") as genome:
... chromosome = genome["chrX"]
... chromosome
...
<Chromosome 'chrX', file='/path/to/genomedata/chrX.genomedata'>

__iter__()
Return next supercontig in chromosome.

New in version 1.2: Supercontigs are ordered by start index

Seldom used in favor of the more direct: Chromosome.itercontinuous()

Example:

1.5. Genomedata usage 17



Genomedata Documentation, Release 1.5.0

>>> for supercontig in chromosome:
... supercontig # calls repr()
...
<Supercontig 'supercontig_0', [0:66115833]>
<Supercontig 'supercontig_1', [66375833:90587544]>
<Supercontig 'supercontig_2', [94987544:199501827]>

__getitem__(key)
Return the continuous data corresponding to this bp slice

Parameters key – base_key must index or slice bases track_key specify data tracks with index,
slice, string, list of strings, list of indexes, or array of indexes

but can also index, slice, or directly specify (string or list of strings) the data tracks.

Returns numpy.array

If slice is taken over or outside a supercontig boundary, missing data is filled in with NaN’s automatically
and a warning is printed.

Typical use:

>>> chromosome = genome["chr4"]
>>> chromosome[0:5] # Get all data for the first five bases of chr4
>>> chromosome[0, 0:2] # Get data for first two tracks at chr4:0
>>> chromosome[100, "ctcf"] # Get "ctcf" track value at chr4:100

exception ChromosomeDirtyError

property attrs
Return the attributes for this Chromosome.

This may also include Genome-wide attributes if the archive is implemented as a directory.

close()
Close the current chromosome file.

This only needs to be called when Genomedata files are manually opened as Chromosomes. Otherwise,
Genome.close() should be called to close any open chromosomes or Genomedata files. The behavior
is undefined if this is called on a Chromosome accessed through a Genome object. Using Genomedata as a
context manager makes life easy by memoizing chromosome access and guaranteeing the proper cleanup.
See Genome.

default_mode = 'r'

default_where = '/'

property end
Return the index past the last base in this chromosome.

For Genome.format_version > 0, this will be the number of bases of sequence in the chromosome.
For == 0, this will be the end of the last supercontig.

This is the end in half-open coordinates, making slicing simple:

>>> chromosome.seq[chromosome.start:chromosome.end]

index_continuous(trackname)
Return the column index of the trackname in the continuous data.

Parameters trackname (string) – name of data track
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Returns integer

This is used for efficient indexing into continuous data:

>>> chromosome = genome["chr3"]
>>> col_index = chromosome.index_continuous("sample_track")
>>> data = chromosome[100:150, col_index]

although for typical use, the track can be indexed directly:

>>> data = chromosome[100:150, "sample_track"]

property isopen
Return a boolean indicating if the Chromosome is still open

itercontinuous()
Return a generator over all supercontig, continuous pairs.

New in version 1.2: Supercontigs are ordered by increasing supercontig.start.

This is the best way to efficiently iterate over the data since all specified data is in supercontigs:

for supercontig, continuous in chromosome.itercontinuous():
print supercontig, supercontig.start, supercontig.end
[...]

property maxs
See Genome.maxs

property mins
See Genome.mins

property name
Return the name of this chromosome (same as __str__()).

property num_datapoints
See Genome.num_datapoints

property num_tracks_continuous
Return the number of tracks in this chromosome

property seq
Return the genomic sequence of this chromosome.

If the index or slice spans a non-supercontig range, N’s are inserted in place of the missing data and a
warning is issued.

Example:

>>> chromosome = genome["chr1"]
>>> for supercontig in chromosome:
... print repr(supercontig)
...
<Supercontig 'supercontig_0', [0:121186957]>
<Supercontig 'supercontig_1', [141476957:143422081]>
<Supercontig 'supercontig_2', [143522081:247249719]>
>>> chromosome.seq[0:10].tostring() # Inside supercontig
'taaccctaac'
>>> chromosome.seq[121186950:121186970].tostring() # supercontig boundary
'agAATTCNNNNNNNNNNNNN'
>>> chromosome.seq[121186957:121186960].tostring() # not in supercontig

(continues on next page)
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(continued from previous page)

OverlapWarning: slice of chromosome sequence does not overlap any supercontig
→˓(filling with 'N')
'NNN'

The entire sequence for a chromosome can be retrieved with:

>>> chromosome.seq[chromosome.start:chromosome.end]

property start
Return the index of the first base in this chromosome.

For Genome.format_version > 0, this will always be 0. For == 0, this will be the start of the first
supercontig.

property sums
See Genome.sums

property sums_squares
See Genome.sums_squares

property supercontigs
Return the supercontig that contains this range if possible.

Returns Supercontig

Indexable with a slice or simple index:

>>> chromosome.supercontigs[100]
[<Supercontig 'supercontig_0', [0:66115833]>]
>>> chromosome.supercontigs[1:100000000]
[<Supercontig 'supercontig_0', [0:66115833]>, <Supercontig 'supercontig_1',
→˓[66375833:90587544]>, <Supercontig 'supercontig_2', [94987544:199501827]>]
>>> chromosome.supercontigs[66115833:66375833] # Between two supercontigs
[]

property tracknames_continuous
Return a list of the data track names in this Chromosome.

class genomedata.Supercontig(h5group)
A container for a segment of data in one chromosome.

Implemented via a HDF5 Group

property attrs
Return the attributes of this supercontig.

property continuous
Return the underlying continuous data in this supercontig. To read the whole dataset into memory as a
numpy.array, use continuous.read()

Returns tables.EArray

property end
Return the index past the last base in this supercontig.

This is the end in half-open coordinates, making slicing simpler:

>>> supercontig.seq[supercontig.start:supercontig:end]

property name
Return the name of this supercontig.
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project(pos, bound=False)
Project chromosomal coordinates to supercontig coordinates.

Parameters

• pos (integer) – chromosome coordinate

• bound (boolean) – bound result to valid supercontig coordinates

Returns integer

property seq
See Chromosome.seq .

property start
Return the index of the first base in this supercontig.

The first base is index 0.

1.6 Tips and tricks

If you find yourself creating many Genomedata archives on the same genome, it might be useful to save a copy
of an archive after you load sequence, but before you load any data. Obviously, you can only do this if you use
the fine-grained workflow of genomedata-load-seq, genomedata-open-data, genomedata-load-data, and genomedata-
close-data.

1.7 Technical matters

1.7.1 Chunking and chunk cache overhead

Genomedata uses an HDF5 data store. The data is stored in chunks. The chunk size is 10,000 bp and one data track
of 32-bit single-precision floats, which makes the chunk 40 kB. Each chunk is gzip compressed so on disk it will be
smaller. To read a single position you have to read its entire chunk off of the disk and then decompress it. There is a
tradeoff here between latency and throughput. Larger chunk sizes mean more latency but better throughput and better
compression.

The only disk storage overhead is that compression is slightly less efficient than compressing the whole binary data file
when you break it into chunks. This is far outweighed by the efficient random access capability. If you have different
needs, then it should be possible to change the chunk shape (genomedata.CONTINUOUS_CHUNK_SHAPE) or
compression method (genomedata._util.FILTERS_GZIP).

The memory overhead is dominated by the chunk cache defined by PyTables. On the version of PyTables we use, this
is 2 MiB. You can change this by setting tables.parameters.CHUNK_CACHE_SIZE.

1.8 Bugs

There is currently an interaction between Genomedata and PyTables that can result in the emission of Performance-
Warnings when a Genomedata file is opened. These can be ignored. We would like to fix these at some point.

1.6. Tips and tricks 21

http://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/
http://pytables.github.io/usersguide/parameter_files.html#tables.parameters.CHUNK_CACHE_SIZE


Genomedata Documentation, Release 1.5.0

1.9 Support

To stay informed of new releases, subscribe to the moderated genomedata-announce mailing list (mail volume
very low):

https://listserv.utoronto.ca/cgi-bin/wa?A0=genomedata-announce-l

For discussion and questions about the use of the Genomedata system, there is a genomedata-users mailing
list:

https://listserv.utoronto.ca/cgi-bin/wa?A0=genomedata-l

For issues related to the use of Genomedata on Mac OS X, please use the above mailing list or contact Jay Hesselberth
<jay dot hesselberth at ucdenver dot edu>.

If you want to report a bug or request a feature, please do so using our issue tracker:

https://github.com/hoffmangroup/genomedata/issues/

For other support with Genomedata, or to provide feedback, please write contact the authors directly. We are interested
in all comments regarding the package and the ease of use of installation and documentation.
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